角的顶点
编辑
角的顶点是两条射线或线段的公共端点
角是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点[3]。角的顶点也可以是下列定义的其中之一:
2条射线的起始点或交点
2条线段的连接或交点
2条直线的交点
简而言之任何直线、线段或射线的组合,其结果中包含两条直的二元边交于一点者,该点称为顶点[4]
多胞形的顶点
编辑
顶点是多边形、多面体或其他高维多胞体的角之端点。为几何结构的边、面或维面相交形成的交点。[4]而包含该顶点的组成之数学对象整体称为一个顶角,其在英语中皆称为Vertex,而顶点图(Vertex figure)探讨的则为顶角的特性,而非只探讨顶点本身。[5]
在多边形中,若一个顶点对应到的顶角,其内角小于180度则称该顶点为凸顶点,否则为凹顶点。[6]更一般地,如果一个n维几何体的其中一个顶点可以使这个几何体与位于这个顶点上之充分地小的n维球体相交的话,则这个顶点为凸顶点[7]。
多胞形的顶点可以对应到图论中的顶点,因为任何多胞形皆可以找到一个对应的边与顶点的图(英语:n-skeleton)[8],而这个几何对象正是图论中的一种数学对象,其顶点可以对应于原始多胞形中的顶点[9],而这个图可以被视为一维单纯复形,其顶点正是一个图顶点。然而,在图论中,顶点有可能少于两条边(如自环),而在几何中无法存在这种顶角。几何顶点和曲线的顶点之间也有关联。曲线的顶点通常代表曲线的局部极值[10],在某种意义上,多边形的顶点是无限曲率的点,并且若用平滑曲线来近似一个多边形,则在多边形的每个顶点附近将存在极端曲率的点。[11]
多面体的顶点
编辑
在多面体中,顶点是多面体中3个或以上的面的交会点。一般情况下,多面体顶点的数量可透过欧拉特征数计算得出。任何凸多面体表面的欧拉特征皆符合下列等式:
V
−
E
+
F
=
2
,
{\displaystyle V-E+F=2,}
其中V是顶点数、E是边数、F是面数。这个等式称为欧拉恒等式[12],由此可知,边的数量恒比顶点和面的数量的总和小2。例如,立方体有12条边和6个面,因此根据欧拉恒等式可以得到有立方体有8个顶点。
平面镶嵌的顶点
编辑
平面镶嵌的顶点是三个过更多个镶嵌元素(即拼出平面镶嵌的单个几何图形)的交会点[13]。平面镶嵌通常由多边形组成,且平面镶嵌的顶点同时也是多边形的顶点,然而有例外存在。
多边形的顶点同时也是平面镶嵌的顶点之例子
其中一个反例